25 research outputs found

    Radio Resource Management Scheme for URLLC and EMBB coexistence in a Cell-Less Radio Access network

    Get PDF
    We address the latency challenges in a high-density and high-load scenario for an ultra-reliable and low-latency communication (URLLC) network which may coexist with enhanced mobile broadband (eMBB) services in the evolving wireless communication networks. We propose a new radio resource management (RRM) scheme consisting of a combination of time domain (TD) and frequency domain (FD) schedulers specific for URLLC and eMBB users. We also develop a user ranking algorithm from a radio unit (RU) perspective, which is employed by the TD scheduler to increase the efficiency of scheduling in terms of resource consumption in large-scale networks. Therefore, the optimized and novel resource scheduling scheme reduces latency for the URLLC users (requesting a URLLC service) in an efficient resource utilization manner to support scenarios with high user density. At the same time, this RRM scheme, while minimizing the latency, it also overcomes another important challenge of eMBB users (requesting an eMBB service), namely the throughput of those who coexist in such highly loaded scenario with URLLC users. The effectiveness of our proposed scheme including time and frequency domain (TD and FD) schedulers is analyzed. Simulation results show that the proposed scheme improves the latency of URLLC users and throughput of the eMBB users compared to the baseline scheme. The proposed scheme has a 29% latency improvement for URLLC and 90% signal-to-interference-plus-noise ratio (SINR) improvement for eMBB users as compared with conventional scheduling policies.This work was supported by the European Union H2020 Research and Innovation Programme funded by the Marie SkƂodowska-Curie ITN TeamUp5G Project under Grant 813391

    Efficient radio resource management for future 6G mobile networks: A Cell-Less Approach

    Get PDF
    Existing mobile communication systems are unable to support ultra high system capacity and high reliability for the edge users of future 6G systems, which are envisioned to guarantee the desired quality of experience. Recently, cell-less radio access networks (RAN) are exploited to boost the system capacity. Therefore, in this letter we propose a cell-less networking approach with an efficient radio resource optimization mechanism to improve the system capacity of the future 6G networks. The simulation results illustrate that the proposed cell-less NG-RAN design provides significant system capacity improvement over the legacy cellular solutions.This work was supported by the European Union H2020 Research and Innovation Programme funded Marie SkƂodowska-Curie ITN TeamUp5G Project under Grant 813391

    Energy-Efficient Sleep Mode Schemes for Cell-Less RAN in 5G and Beyond 5G Networks

    Get PDF
    In 5G and beyond 5G networks, the new cell-less radio access network architecture is adopted to overcome the extreme network capacity challenges generated by massive wireless devices used for diverse scenarios and various applications. At the same time, the evolution of mobile communications faces the important challenge of increased network power consumption. To fulfill user demands for various user densities and meanwhile reduce the power consumption, we present a novel energy-efficiency enhancement scheme, i.e., (3×E) to increase the transmission rate per energy unit, with stable performance within the cell-less radio access network (RAN) architecture. Our proposed (3×E) scheme activates two-step sleep modes (i.e., certain phase and conditional phase) through the intelligent interference management for temporarily switching access points (APs) to sleep, optimizing the network energy efficiency (EE) in highly loaded scenarios, as well as in scenarios with lower load. An intelligent control over underutilized/unused APs is considered, taking their interference contribution into account as the primary main criteria in addition to load-based conditional criteria. Therefore, our proposed scheme assures a stable performance enhancement and maintains an efficient power saving when the number of UEs increases, improving existing works not addressing this performance stability in peak-traffic hours. Simulation results show that the network EE is improved up to 30% compared to the reference algorithm and up to 60% with respect to the baseline algorithm in which all APs are active all the time.This work was supported by the European Union H2020 Research and Innovation Programme funded by the Marie SkƂodowska-Curie Innovative Training Network (ITN) TeamUp5G Project under Grant 81339

    A review on green caching strategies for next generation communication networks

    Get PDF
    © 2020 IEEE. In recent years, the ever-increasing demand for networking resources and energy, fueled by the unprecedented upsurge in Internet traffic, has been a cause for concern for many service providers. Content caching, which serves user requests locally, is deemed to be an enabling technology in addressing the challenges offered by the phenomenal growth in Internet traffic. Conventionally, content caching is considered as a viable solution to alleviate the backhaul pressure. However, recently, many studies have reported energy cost reductions contributed by content caching in cache-equipped networks. The hypothesis is that caching shortens content delivery distance and eventually achieves significant reduction in transmission energy consumption. This has motivated us to conduct this study and in this article, a comprehensive survey of the state-of-the-art green caching techniques is provided. This review paper extensively discusses contributions of the existing studies on green caching. In addition, the study explores different cache-equipped network types, solution methods, and application scenarios. We categorically present that the optimal selection of the caching nodes, smart resource management, popular content selection, and renewable energy integration can substantially improve energy efficiency of the cache-equipped systems. In addition, based on the comprehensive analysis, we also highlight some potential research ideas relevant to green content caching

    Secrecy Performance Analysis of Mixed α - Ό and Exponentiated Weibull RF-FSO Cooperative Relaying System

    Get PDF
    Funding Information: This work was supported in part by the National Research Foundation of Korea—Grant funded by the Korean Government under Grant Ministry of Science and ICT-NRF-2020R1A2B5B02002478, and in part by Sejong University through its Faculty Research Program under Grant 20212023.Peer reviewedPublisher PD

    Deliverable D2.1 - Ecosystem analysis and 6G-SANDBOX facility design

    Get PDF
    This document provides a comprehensive overview of the core aspects of the 6G-SANDBOX project. It outlines the project's vision, objectives, and the Key Performance Indicators (KPIs) and Key Value Indicators (KVIs) targeted for achievement. The functional and non-functional requirements of the 6G-SANDBOX Facility are extensively presented, based on a proposed reference blueprint. A detailed description of the updated reference architecture of the facility is provided, considering the requirements outlined. The document explores the experimentation framework, including the lifecycle of experiments and the methodology for validating KPIs and KVIs. It presents the key technologies and use case enablers towards 6G that will be offered within the trial networks. Each of the platforms constituting the 6G-SANDBOX Facility is described, along with the necessary enhancements to align them with the project's vision in terms of hardware, software updates, and functional improvements

    Next generation wireless communication networks: Energy and quality of service considerations

    No full text
    The rapid growth in global mobile phone users has resulted in an ever-increasing demand for bandwidth and enhanced quality-of-service (QoS). Several consortia comprising major international mobile operators, infrastructure manufacturers, and academic institutions are working to develop the next generation wireless communication systems fifth generation (5G) - to support high data rates and increased QoS. 5G systems are also expected to represent a greener alternative for communication systems, which is important because power consumption from the information and communication technology (ICT) sector is forecast to increase significantly by 2030. The deployment of ultra-dense heterogeneous small cell networks (SCNs) is expected to play a major role in meeting the explosive growth of user traffic demand in 5G wireless communication systems. However, while the concept of small cells in heterogeneous networks (HetNets) largely addresses the bandwidth scarcity problem, unless otherwise carefully managed, a large number of uncoordinated and lightly loaded SCNs will significantly increase the access network power consumption, contrary to the green communication target of 5G systems. In addition, to cater for the huge volumes of traffic, the backhaul network power consumption will also increase. This thesis addresses the research challenges facing 5G systems in regard to energy efficiency and QoS. The thesis examines ways to reduce power consumption in access networks, how to design green backhauling solutions, how to develop synergy between wired and wireless backhauling options, and how to increase energy efficiency in a weather-dependent backhaul network without hindering network QoS. Different system models and solution techniques are investigated in order to successfully minimize overall power consumption in 5G HetNets while maintaining network QoS. The thesis contributes as follows: first, an energy-efficient resource management system is introduced to minimize access network power consumption; second, two green backhauling solutions, one for wired optical backhaul and the other for wireless millimeter wave (mmWave) backhaul, are presented; third, a synergy is developed between two energy-efficient backhauling solutions to reduce power consumption; fourth, the impacts of SCN topology and mmWave spectrum are presented; and finally, a hybrid free-space optics (FSO)/mmWave channel model is introduced to minimize power consumption for weather-dependent channels. Each phase of the research listed above also investigates the network QoS, i.e., average delay and jitter for 5G HetNets. The research presented in this thesis therefore contributes new knowledge in energy efficiency and QoS for next generation wireless communication networks and makes important contributions to this field by investigating different system models and proposing solutions to significant issues
    corecore